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A liquid film flowing down an inclined heated plane subject to surface wave and 
thermocapillary instabilities is studied. Three mechanisms exist by which energy can 
be transferred to  the disturbance. Two of these mechanisms are associated with the 
thermocapillary forces and one with the shear stress of the basic flow a t  the deformed 
free surface. Depending on which mechanism is dominant, the instability can assume 
the form of either long transverse waves or short longitudinal rolls. 

1. Introduction 
An isothermal liquid layer flowing down an inclined plane might become unstable 

owing to surface or shear wave modes of instability. Except for very small angles of 
inclination, the surface wave mode causes instability first (Lin 1967; De Bruin 1974; 
Floryan, Davis & Kelly 1987). When a temperature gradient exists across the film, 
the flow might become unstable owing to thermocapillary or buoyancy forces as well. 
For moderate values of the Prandtl number Pr, the buoyancy mode causes 
instability first only when the angle of inclination is small (Kelly & Goussis 1982; 
Smith 1990b). On the other hand, the thermocapillary and surface wave modes 
compete in causing instability for all angles of inclination, a t  least for very long- 
wavelength disturbances (Kelly, Davis & Goussis 1986). Here, the surface wave and 
thermocapillary modes of instability will be considered for disturbances of finite 
wavelength, with the understanding that small angles of inclination are excluded. 

The disturbance due to the surface wave mode originates a t  the free surface (hence 
surface wave instability) where vorticity is produced by the basic flow shear stress 
(Kelly et al. 1989; Smith 1990a). Owing to the effects of inertia, the perturbation 
vorticity tends to be advected downstream relative to the deflection of the free 
surface so as to cause instability. This shift is opposed by hydrodynamic and surface 
tension forces. Since the latter force is unimportant for large-wavelength dis- 
turbances, the instability manifests itself a t  these limiting values of wavelengths a t  
the point where the effects of inertia balance the effects of hydrostatic forces. This 
balance is expressed by the relati04 

(Benjamin 1957; Yih 1963), where g is gravity, H is the depth of the film, v is the 
kinematic viscosity, and P is the angle of inclination. Both the effects of inertia and 
the hydrostatic pressure force increase with the depth. If the depth of the layer is less 
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than that indicated by ( l ) ,  the hydrostatic pressure force dominates and the flow is 
stable. In  the opposite case, the effects of inertia dominate and the flow is unstable. 
In the limit b+ go", (1) shows that H + 0, i.e. the flow is unstable for all depths. Since 
the force which drives the disturbance points in the direction of the basic flow, the 
instability assumes the form of transverse waves which extract the maximum 
amount of energy (Yih 1955). In  thc following, this type of instability will be referred 
to as the hydrodynamic or H-mode. 

When the liquid layer is horizontal and is bounded from below by a heated wall, 
instability might be caused by forces a t  a free surface which arc due to surface 
tension variations produced by temperature gradients (Pearson 1958). There exist 
two distinct mechanisms by which thermal eflects can lead to a destabilizing 
thermocapillary force. One mechanism (which in the following will be referred to as 
the P-mode) is associated with the interaction of the basic temperature with the 
perturbation velocity field. For the layer to be subject to this mode of instability, the 
following condition must be satisfied : 

[-% AT ] p h  !?!% > 32.073 

(Goussis & Kelly 1990), where cr is the surface tension, AT is the difference between 
the wall and the ambient temperatures, p is the density, c p  is the heat capacity, ,u is 
the dynamic viscosity, and h is the heat transfer coefficient at the free surface. The 
physical aspects related to this mode all appear in the above necessary condition for 
instability. The product in the brackets is a measure of the thermocapillary forces, 
while pcp is a measure of the effects of convection in extracting energy from the basic 
state. Large values of these quantities are favourable for instability. The dynamic 
viscosity ,u and the heat transfer coefficient h are measures of the energy loss due to 
viscous dissipation and of the heat loss through the free surface, respectively. For 
instability to occur, the energy transferred to the disturbance and the work done by 
the thermocapillary forces have to be enough to overcome both these kinds of losses. 
The mechanism for energy transfer is more effective when the depth of the liquid 
layer is large. As a result, when condition ( 2 )  is satisfied, sufficiently deep layers are 
unstable, while sufficiently shallow layers are stable (Goussis & Kelly 1990). Large- 
wavelength disturbances are stabilized via heat loss through the free surface, while 
short-wavelength disturbances are stabilized by viscous dissipation (Goussis 1986). 
Therefore, the critical wavelength is of the order of the layer's depth (Pearson 1958). 

The other mechanism for the development of thermocapillary forces (in the 
following referred to as the S-mode) is associated with the modification of the basic 
temperature a t  the free surface by the surface deformation (Goussis & Kelly 1990). 
What mainly opposes the deformation is gravity. For disturbances of sufficiently 
short wavelength, surface tension also acts so as to suppress surface deformation. 
Therefore, instability with respect to this mode takes the form of large-wavelength 
disturbances for which the hydrodynamic pressure is the only stabilizing force. 
Instability occurs first when the balance between the thermocapillary forces and the 
forces due to the hydrodynamic forces turns in favour of the former. This balance is 
expressed by the relation 

(Smith 1966), where K is the coefficient of thermal conductivity. If the depth of the 
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layer is less than that indicated by the above equation, the layer is unstable. For 
both modes of thermocapillary instability the disturbance has no preferred direction. 

For instability to occur owing to the H-mode a mean flow is necessary, while for 
instability to occur owing to the P- and S-modes a temperature difference across the 
film must be present. As a result, a single critical parameter (such as the Reynolds 
or Marangoni number) appropriate for all three modes of instability does not exist. 
However, from the discussion above of the different modes of instability, it  seems 
that the depth of the film plays an important role in the different physical processes 
that compete for stability or instability in all three modes. At sufficiently thin layers, 
the hydrostatic pressure dominates the effects of inertia so that the flow is stable with 
respect to the H-mode. As the depth of the layer increases, inertia dominates and the 
flow becomes unstable. Similarly, when the layer is thin, the interaction of the basic 
temperature with the perturbation velocity cannot transfer enough energy to  the 
disturbance, so that the layer is stable with respect to the P-mode. At sufficiently 
thick layers, such an energy transfer is possible and instability might occur. On the 
other hand, for thin layers the thermocapillary forces dominate the hydrostatic 
pressure forces and the layer is unstable with respect to the S-mode. As the layer 
thickens, the hydrostatic pressure force dominates and the layer becomes stable. 
Therefore, in the present analysis we shall consider as a critical parameter a non- 
dimensional number (the Archimedes number) which is a measure of the depth of the 
layer. In  particular, a set of non-dimensional parameters will be used which is 
appropriate for a comparison of the theoretical results with experimental data (Kelly 
et al. 1986). In this set, the variation of each of the physical parameters which control 
the flow of a given fluid in the laboratory (i.e. the depth of the film, the angle of 
inclination, and the temperature difference across the film) appears in a single non- 
dimensional parameter only. 

The results of several works, which are related to the problem examined here, 
provide some indication of how the surface wave and thermocapillary modes 
interact. When the angle of inclination is sufficiently large and the disturbance 
consists of long waves, the surface wave and thermocapillary instabilities reinforce 
each other (Lin 1975; Kelly et al. 1986). I n  particular, in the long-wavelength limit, 
the flow becomes unstable first with respect to transverse waves which extract the 
maximum amount of energy from the basic state (Kelly et al. 1986). This outcome of 
the interaction of the two instabilities does not hold for all wave forms. Sreenivasan 
& Lin (1978), considering small angles of inclination, show that the disturbance 
assumes the form of longitudinal rolls. I n  that case, the emergence of a preferred 
direction is entirely due to  the presence of the shear flow. As in many other cases of 
thermoconvection (Gallagher & Mercer 1965; Gage & Reid 1968; Kelly & Goussis 
1982), the shear flow tends to stabilize disturbances whose wavenumber vectors have 
a component in the streamwise direction, so that the instability a t  small angles 
assumes the form of longitudinal rolls. Clearly, for the present study to be complete, 
a disturbance of arbitrary orientation has to be considered. 

2. The governing equations 
In  the derivation of the governing linear stability equations it is assumed that all 

physical properties, except the surface tension, are constant. In  addition, the effects 
of compressibility and viscous dissipation are ignored. The surface tension is taken 
to  depend on temperature in the form 

rT=cr ,+  - (T-To), M0 (4) 
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where the subscript 0 refers to the free surface conditions. The dimensional velocity 
vector u, temperature T ,  pressure P,  and time 7 ,  are scaled as 

V gH2 sin /3 
H 2v ’ 

u = U,U*i,+-ul, u, = (5)  

H2 
7=- - t  

V 

where U*, T*, and P *  are the non-dimensional basic flow velocity, temperature, and 
pressure respectively, the subscripts w and 0 refer to the conditions a t  the wall and 
at  the ambient, respectively, and the primes denote perturbation quantities. In  
the following the primes and asterisks are dropped for convenience. With these 
scalings, the linearized non-dimensional stability equations (momentum and energy 
equations) for a three-dimensional disturbance become 

ut + x sin PUu, + x sin PDUw = -p ,  + V2u, (9a) 

v,+XsinPUv, = - p y + V 2 v ,  (9b) 

w,+xsinPUw, = -p,+V2w, (9c) 

( 9 4  
1 

Pr 
8, + x sin PU8, + wDT = -V2B, 

where 

and the subscripts t ,  x, y, and z denote partial derivatives, and K is the thermal 
diffusivity. The above equations are supplemented with the boundary conditions a t  
the wall and the free surface. At the wall we have the no-slip, non-permeable, and 
isothermal conditions : 

u = v = w = B = O  a t  z = 1 .  ( l l a d )  

At the free surface the normal and shear stress conditions, the heat balance, and the 
kinematic condition are 

2x5 
-2xcosPqDP-p+wZ+ -V2q = 0 a t  z = 0, 

Bo 

(12b) 

v,+wy = - B y e  a t  z = 0, (12c) 

8, = Bix:(qDT+8) a t  z = 0, ( 1 2 4  

qt+XsinPUqx = w a t  z = 0, (12e) 

M 
Ba 

M 
Bi 

Xsin/3D2Uq+u,+w, = 43,. a t  z = 0, 
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(13) 
h 2v2 

dT p v  vg 
where B o = - ( 4 v 4 g ) ; ,  P M=-d-X(A) :  Bi=K(--), P = z ,  

(7 

and 7 is the non-dimensional free surface deflection. Substituting the following 
expressions for the perturbation quantities : 

( w O , ~ )  = [ F ( d ,  O(z),Nlexp[i(k,x+k,y--olt)l, (14) 

where k, and k, are the real wavenumbers in the x- and y-directions, respectively, 
and a is the complex growth rate, the governing equations become 

(15a) 

(15b) 

(D2 - k2)2F + i[(a- k,X sinpU) (D2 - k2) + k,x sin pD2V F = 0, 

(D2 - k2) O +  iPr[(a- k,X sinpU) 0 + iFDT] = 0, 

F( 1) = DF( 1) = O( 1) = 0, (15 c-e) 

(D3 - 3k2D) F ( 0 )  + i[a- k,x sinPU(O)] DF(0) + 2k2x cosp+- N = 0, (15 f )  [ ;;:I 
M 

(D2+ k2) F ( 0 ) -  ik,Xsin/3D2U(0)N- k2-DDO(0) Bi = 0, (159)  

DO(0) = B.L'x~[NDT(O) + O(O)] ,  (154 

iF(0) N =  
a - k, x sin pU(0)  ' 

(15i) 

where k2 = k i + k l .  
When p = 0, a mean flow does not exist and the instability is of thermocapillary 

origin with no preferred direction. When the plane is slightly tilted (p  4 l) ,  
Sreenivasan & Lin (1978) show that the instability at k = O(1) assumes the form of 
longitudinal rolls. I n  this case (k, = 0), the basic velocity is absent from the 
governing equations. The marginal state is stationary (Takashima 1981 ; Goussis & 
Kelly 1990) and is described by the relation 

where Fl = 8k(sinh k cosh k - k) (Bi xi sinh k + k cosh k), 

F2 = sinh3 k- k3 cosh k, F3 = 8k5 cosh k 

(Smith 1966; Sreenivasan & Lin 1978). I n  the k + O  limit (16) reduces to 

Equation (17), apart from the term cosp which accounts for the component of 
gravity normal to the free surface, is identical to  (3). In  the limit @+90", (17) shows 
that x + 00, i.e. the layer is unstable for all 2. 

When the film is isothermal, the most unstable disturbance consists of transverse 
waves (k, = 0). The situation is the same in the non-isothermal case, a t  least in the 
k-+O limit (Kelly et al. 1986). The equations governing the stability of the flow with 

2-2 
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respect to this type of disturbance are obtained from (15a-i) by use of the 
transformations 

F = ik@, u = kc,  k = k,, (18) 

where @ is the normal mode amplitude of the stream function and c is the complex 
wavespeed. These equations are 

(19a) 

(D2-kk2)O+ikPr[(c-xsin/3U) O+@DT] = 0, (19b) 

(D2 - k 2 ) W +  ik[(c-x sinpli) (D2 - k2) + x sin/3D2U] @ = 0, 

@(1)  = D@(1) = O(1) = 0, (19c-e) 

(D3 - 3k2D) @(O) + ik[c-x sin /3U(O)] D@(O) + 2ikx 

M 
(D2+ k2) @(O) +xsin/3D2U(0)N-ik-DD(0) Bi = 0, (19d 

DO(0) = Bixi[MIT(O) + O(O)], (19h) 

(19i) 

A small-wavenumber analysis yields the following relation for a neutral disturbance : 

15 Mxf 
16 l + B i x ~  

(x sin /3)'-ix cos/3+ - , = 0. 

The first and third terms represent the destabilizing effects of mean shear and 
thermocapillary forces, respectively, while the second term represents the stabilizing 
effects of gravity. When M = 0, the above relation reduces to (1) which defines the 
critical conditions for the surface wave mode of instability (H-mode). For 
longitudinal rolls, there is no mechanism to allow energy transfer from the mean flow 
to the disturbance, so that the term representing the mean shear is absent. In fact, 
if the first term in (20) is neglected one recovers (17) ,  which defines the critical 
conditions for thermocapillary instability (S-mode) for large-wavelength distur- 
bances. This result led to the conclusion that in the k + O  limit transverse waves 
are more unstable than longitudinal rolls (Kelly et al. 1986). In general, (20) yields 
two solutions for x. One of these solutions corresponds to  a surface wave instability 
(H-mode) as modified by the surface tension variation, while the other corresponds 
to a thermocapillary instability (S-mode) as modified by the shear flow. Equation 
(20) does not always admit a physically meaningful solution. For example, in the 
limit /3+9O0 there is no real and positive value of x that can satisfy (20). Depending 
on the values of M and Bi, there is a value of /3 for which the two solutions of (20) 
coalesce. Beyond that value of /3 the flow is unstable for all x, at  least for large- 
wavelength disturbances. It can be shown that same situation occurs for a range of 
values of M and Bi. 

It is seen that in the case of transverse wave both the surface wave and the 
thermocapillary modes can cause instability. In  order to examine the relative 
importance of each of the two modes of instability, the equation for the rate of 
change of the kinetic energy of the disturbance will be examined. This equation in 
non-dimensional form is 

X+F+H = W + Y + Y - + 9 ,  (21 1 
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where X = s' [ [uz +w2]  dzdz, 
2hdt  

M 
Bih $'- = - [ [ -uOzz]z=O dx, 

where h is the wavelength. When M = 0, (20) reduces to  that developed for the 
isothermal problem (Kelly et al. 1989). The term X represents the time rate of 
change of the kinetic energy of the disturbance. The terms F and 3? represent the 
rate of work done against the surface tension and the hydrostatic pressure in 
deforming the free surface. These three terms are proportional to the growth rate kci 
and represent the way in which the total mean energy is distributed to the 
disturbance. The terms 9, 9, and V ,  represent the rate of energy transfer to  the 
disturbance by the Reynolds stress, by the shear stress of the basic flow at the free 
surface, and by the thermocapillary forces, respectively. 9 is always negative and 
denotes the rate a t  which energy is being dissipated by viscosity. 

Solutions of the set of linear stability equations (15a-i) (or 19a-i) were obtained 
using the Tau method (Gottlieb & Orszag 1977), where the eigenfunction F (or @) and 
0 were expanded in Chebyshev series. The Tau method resulted in a matrix 
eigenvalue problem of the form 

(P+(TQ+(T'R)X = 0 ,  (23) 

where (T is the eigenvalue (a or c ) ,  P is a fully populated matrix, 0 has three rows of 
zeros (corresponding to  the boundary conditions a t  the wall which do not involve the 
eigenvalue), and R has only rows of zeros except for one (corresponding to the normal 
stress condition which contains the eigenvalue in quadratic form). Using a 
transformation (Pearlstein & Goussis 1988), the above equation was put in the form 

(S+aT) Y = 0, (24) 

where the size of the system has increased by unity. The singularity of 0 is preserved 
in T and produces three eigenvalues whose modulus is infinity. With another 
transformation (Goussis & Pearlstein 1989) these eigenvalues are mapped to 
prespecified points in the complex plane, while all finite eigenvalues are preserved. 
The eigenvalue problem thus formulated was solved by the QZ algorithm (Moler & 
Stewart 1973). Results thus obtained were compared with those existing in the 
literature for some limiting cases (Pearson 1958; Smith 1966) and with those 
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k 

FIGURE 1 .  Neutral curves for M = 45, Pr = 7 ,  Bi = 10, Bo = 5 x lW4, p = 15'. ~ , transverse 
waves; ---, longitudinal rolls; u, unstable region. 

obtained by the analytical solutions (16), (20). The agreement was excellent (Goussis 
1986). 

With the eigenvalue problem (19a-i) solved by representing the eigenfunctions F 
and 0 by Chebyshev series, the integrals in (21) were calculated by Simpson's one- 
third rule. Enough terms in the Chebyshev expansion were retained to assure that 
the residual in (21) was of the order of the error of the integration method. 

3. Results and discussion 
Figures 1-5 show neutral curves for transverse and longitudinal disturbances a t  

different values ofM. When M is sufficiently small, figure 1 shows that there exist two 
unstable regions in the (x, k)-plane, both of which lie in the k < 1 region. The upper 
unstable region corresponds to the H-mode of instability as modified by the 
thermocapillary forces. The lower unstable region corresponds to the S-mode of 
instability as modified by the shear flow. For both cases the flow becomes unstable 
first with respect to  transverse waves a t  k, = 0. Therefore, the critical values xc = 
xH and xs are given by the relation (20). As M increases, xH and xs approach each 
other. This is shown in figure 2 ,  where it is also shown that another unstable region 
appears a t  k = O( 1) .  Instability there occurs when x is sufficiently large, say x > xp, 
and it assumes the form of longitudinal rolls. This unstable region is due to  the P- 
mode and appears only when MPr/Bi  > 32.073 (i.e. (2)). For the values of the 
parameters of figure 2, xH < xp so that the flow is stable when xs < x < xH, as in the 
case of figure 1.  With further increase of M ,  xH and xs still approach each each other 
while xp decreases. This is shown in figure 3, where now, since xp < xH, the flow is 
stable only when xs < x < xp. For a larger value of M ,  figure 4 shows that xp < xs 
so that the flow is unstable for all values of x. In  addition, figure 4 shows that a t  
k = 0(1) there is a closed region where the flow becomes unstable with respect to  
transverse waves as well. However, since this unstable region lies inside the region 
where the longitudinal rolls are unstable, it does not affect the stable region in the 
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waves ; ---, longitudinal rolls ; u, unstable region. 
FIGURE 2. Neutral curves for M = 51, Pr = 7, Bi = 10, Bo = 5 x p = 15'. -, 
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curves for M = 52, Pr = 7, Bi = 10, Bo = 5 x lo-*, /3 = 15'. -. transverse 

(x, k)-plane. There is a value of M, depending on Bi and p, such that xs = xH (Kelly 
et al. 1986). Beyond this value of M the flow is unstable for all values of x, a t  least 
for large-wavelength disturbances. Neutral curves for such a value o f M  are presented 
in figure 5, where it is shown that the two unstable regions in the k 4 1 range unite, 
forming a single unstable region. For the values of the parameters in the sequence of 
figures 1-5, as A! increases the flow becomes unstable for all values of x first at the 
point where xs = xp. For different values of the parameters, the same situation can 
occur first a t  the point where xH = xs. 

I n  order to examine the effects of the thermocapillary forces on the H-mode and 
the effects of the basic flow on the S- and P-modes, the terms in the rate of change 
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FIGURE 4. Neutral curves for M = 55, Pr = 7, Bi = 10, Bo = 5 x /3 = 
waves ; ---, longitudinal rolls ; u, unstable region. 
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FIGURE 5. Neutral curves for M = 65, Pr = 7, Bi = 10, Bo = 5 x /3 = 15". -, transverse 
waves; ---, longitudinal rolls; u, unstable region. 

of the kinetic energy equation for transverse waves (21) were evaluated for different 
values of x and the parameters of figure 4. The physical meaning of the terms in (21) 
was explained previously : i t  is sufficient to say here that Y is associated mainly with 
the S and P modes, while the term Y is associated mainly with the H-mode. In  the 
k < 1 region, table 1 shows that the terms Y and Y are positive for all values of x, 
indicating that both the thermocapillary forces and the basic shear stress tend to 
cause instability. As expected, Y decreases with increasing x, while 9' increases. The 
term 92, although small, is positive. This indicates that some energy is transferred to 
the disturbance from the basic flow through the Reynolds stress. I n  the k = O(1) 
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X c 

1 0.1 0.5175,0.02136 x 10-1 
2 1 0.5175,0.01758 x lo-' 

4 20 10.3509,0.03697 x 10-1 
3 10 5.1764, -0.5252 X lo-' 

1 

x 0.7053 x 
F 0.8697 x lo-' 
x 0.9050 x 10-2 
w 0.6161 x lo-' 
9 0.5874 
Y 0.4303 
9 - 1.000 - 

2 

0.5850 x 
0.2609 x 
0.1260 x 10-2 
0.6233 x 
0.9942 
0.7363 x LO-' 
1 .000 

3 

-0.1747 x 
-0 .1685~  
-0.3778 x 10-4 

0.3544 x 10-5 
0.9997 
0.3992 x 

- 1 .000 

4 

0.1232 x 
0.3746 x lo-' 
0.1333 x 
0.2798 x lo-' 
1 .0000 
0.2303 x 

-1.Ooo 

TABLE 1. Values of the terms in the rate of change of kinetic energy equation (21) for different 
values of x, k = 0.01, and the  parameters of figure 4 

X c 

1 2 0.4528, -0.2508 x lo-' 

3 12 2.7446, -0.1132 x 10-' 
4 40 9.3923, -0.2131 

2 6 1.3620,0.8256 x 

I 2 3 4 

X -0.1520 x lo-' 0.4989 x 10-3 -0.6850 x 10-3 -0.1288 x lo-' 
F -0.1172 x lo-' 0.2907 x -0.3612 x 10-5 -0.1396 x 
Z -0.1069 x lo-'' 0.5513 x lo-" -0.1087 X lo-'' -0.9392 x lo-' 

Y -0.1854 x 10-5 -0 .1164~ -0.3793 x -0.3058 x 
Y 0.9984 1 .om5 0.9996 0.9907 
9 -1.000 - 1.Ooo - 1.000 - 1.000 

a -0.7974 x 10-5 -0.7215 x -0.2999 x -0.3762 x lo-' 

TABLE 2. Values of the terms in the rate of change of kinetic energy equation (21) for different 
values of x,  k = 2.9, and the  parameters of figure 4 

region, table 2 shows that the energy available for the disturbance to grow comes 
from the action of the thermocapillary forces only (Y > 0 ) ,  while the basic shear 
stress a t  the free surface and the Reynolds stress in the bulk of the fluid tend to 
stabilize the flow (9 < 0 and B? < 0). 

For the problem examined here, a Squire's transformation exists but Squire's 
theorem is not valid. This is demonstrated in figures 1-5, where i t  is shown that 
depending on the wavenumber, the flow becomes unstable first with respect to either 
transverse or longitudinal disturbances. As the results from the rate of change of 
kinetic energy equation show, this is entirely due to the effects of the basic flow on 
the action of the thermocapillary forces. Depending on the value of the wavenumber, 
the basic flow can either destabilize or stabilize the flow via the shear stress a t  the 
deformed free surface and the Reynolds stress in the bulk of the fluid. As noted 
earlier, these two mechanisms for energy transfer are absent when the axis of the 
disturbance lies in the direction of the flow (longitudinal rolls). I n  this case, this type 
of disturbance can be unstable only owing to the thermocapillary forces. As the axis 
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- 3  - 2  - 1  0 
log x 
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FIGURE 6. The variation of Y - / 9  and 9'19 for transverse waves, k = 0.01, and the parameters 
of figure 4. 

of the disturbance is rotated, the effectiveness of the two hydrodynamic mechanisms 
for energy transfer increases, reaching a maximum when the axis lies perpendicular 
to the basic flow (transverse waves). As a result, in the k < 1 region where the basic 
flow and the thermocapillary forces reinforce each other, the most unstable 
disturbance consists of transverse waves. On the other hand, in the k = O(1) region, 
where the basic flow opposes the action of the thermocapillary forces, the most 
unstable disturbance consists of longitudinal rolls. 

I n  order to determine how the H- and S-modes reinforce each other in causing 
instability in the k 4 1 region, the terms ?'- and 9' of (21) were plotted against x for 
fixed k. The results for the parameters of table 1 are shown in figure 6. When M = 

0, the flow is unstable beyond the value of x, denoted by the broken line, due to  the 
H-mode. However, when M += 0, the flow becomes unstable a t  small values of x as 
well and the stbble region is reduced as shown in the figure. When x + 1, figure 6 
shows that ?'- = O( 1) and Y is negligiblc, indicating that the instability there is due 
to the S-mode. As x increases, V decreases, while Y increases. Even before x reaches 
the lower neutral curve, 9" becomes negligible and Y = 0(1), indicating that the 
instability there is due to the H-mode. However, since the instability a t  small values 
of x occurs only when M + 0, it  is clear that the small contribution from the S-mode 
is essential. The same is true for the region beyond the upper neutral curve. The small 
influence of the S-mode there is sufficient to lower significantly the value of x for 
neutral stability. 

In  the k = O(1) region where the flow becomes unstable owing to the P-mode, the 
basic flow has a stabilizing effect on this mode of instability so that the disturbance 
assumes the form of longitudinal rolls. This stabilizing influence is exercised by the 
Reynolds stress inside the layer and by the basic shear stress a t  the deformed free 
surface. I n  order to examine the relative importance of these two stabilizing 
mechanisms of the basic flow in the case of transverse waves, the variation of the 
ratio B/Y as a function of x was examined for the parameters of table 2. The results 
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FIGVRE 7 .  The variation of W/Y for transverse waves, k = 2.90, and the parameters of figure 4. 

are presented in figure 7 where i t  is shown that, except in the x < 1 region, the effect 
of the Reynolds stress is larger than the effect of the basic shear stress at the free 
surface. I n  the k = O(1) region, c < ~ s i n p  so that a critical layer is developed 
(Goussis 1986). In other cases (i.e. Tollmien-Schlichting waves), the emergence of a 
critical layer can be accompanied by energy transfer to the disturbance through the 
Reynolds stress. However, as the results of table 2 show, the appearance here of a 
critical layer allows the basic flow to have a stabilizing influence. 

The growth rates of the different types of disturbances reflect the outcome of the 
interaction of the surface wave and thermocapillary instabilities discussed above. In 
the k 4 1 region where the H- and S-modes reinforce each other, figure 8 shows that 
the growth rate of transverse waves is always larger than that of longitudinal rolls. 
On the other hand, in the k = O(1) region, where the basic flow has a stabilizing 
influence, figure 9 shows that the opposite is true. In  addition, these figures show that 

FIGURE 8. The variation of the growth rate with x for transverse (-) and longitudinal (---) 
disturbances for k = 0.01 and the parameters of figure 4. 
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FIGURE 9. The variation of the growth rate with ,y for transverse (-) and longitudinal (---) 
disturbances for k = 2.90 and the parameters of figure 4. 

the instability due to the H- and S-modes (figure 8) yields a smaller growth rate than 
the instability due to the P-mode (figure 9). Apparently, the mechanism for energy 
transfer to the disturbance for the P-mode of instability is morc efficient than the 
mechanism for the H- and S-modes. 

For all practical considerations, the value of the Bond number Bo is very small. As 
figures 1-5 show, in this case the unstable regions due to  the H- and S-modes (for 
which the surface deformation is essential) arc restricted to the k 4 1 region. For x 
fixed, the effects of surface tension in suppressing the surface deformation increase 
as k increases. However, a t  the same time the effects of thermal convection inside the 
layer in producing a larger temperature variation along the free surface increase as 
well (Goussis & Kelly 1990). If Bo is sufficiently small, the restoring force due to 
surface tension stabilizes both the H- and S-modes before the effects of convection 
become important. As a rcsult, the instability with respect to  these modes occurs a t  
k, = 0. When k = O( 1) and Bo 4 1, the normal stress condition (19f) shows that the 
free surface can be considered as non-deformable. Therefore, in the k = O(1) region 
the H- and S-modes are absent and instability can occur due to the P-mode only. 

In the unlikely case where Bo becomes large, the picture described above changes. 
This is shown in figure 10, where neutral curves are presented for the parameters of 
figure 2 except Bo, which now attains relatively large values. Figure 10 shows that 
as Bo increases, the instability a t  k = O( I )  occurs at a smaller value of x. This is due 
to the fact that the effects of surface deformation now become important. Therefore, 
the temperature variation a t  the free surface produced by the P-mode is augmented 
by the modified basic temperature there, resulting in larger thermocapillary forces. 
In  addition, figure 10 shows that the neutral curves which originate from the k = 0 
axis are now extended further inside the (x, k)-plane where the effects of convection 
are important. The result is that the P-mode reinforces the H- and S-modes so that 
the instability which occurs in the k @ 1 region now initiates a t  k, ?= 0. The overall 
effects of increasing Bo is to decrease the range of values of x for which the flow is 
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FIGURE 1 1 .  Neutral curves for M = 51, Pr = 7, Bi = 10, Bo = 0.50, /3 = 15". -, transverse 
waves ; ---, longitudinal rolls ; u, unstable region. 

stable. For even larger Bo, figure 11 shows that the unstable regions due to the S- and 
P-modes unite, thus making the flow unstable for all values of 2. The variation of xc 
with Bo is presented in figure 12, where it is shown that the stability boundaries are 
independent of Bo for all realistic values of this parameter. 

The neutral curves presented in figure 1-5 show that the range of values of x for 
which the flow is stable decreases as M increases. The variation of xc with M is 
presented in figure 13. For the values of x for which the flow is stable when M = 0, 
the instability that occurs with increasing M assumes the form of transverse waves 
when x is sufficiently small or large, while for intermediate values of x the instability 
assumes the form of longitudinal rolls. As the sequence of figures 1-5 shows, as M 
increases the flow becomes unstable first with respect to longitudinal rolls only when 
xs < xp < xH. However, if the two unstable regions in the Ic < 1 range unite before 
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xp < xH, the flow becomes unstable first with respect to transverse waves for all 
values of x. Such a case is presented in figure 14 for the parameters of figure 12, 
except Bi which is now smaller. It is shown that the stable region decrcases with 
decreasing Bi and that longitudinal rolls are not accounted for in thc stability 
boundaries. 

When Bo is sufficiently small, the effects of surface deformation on the P-mode are 
negligible. As a result, this mode is independent of 8. The H- and S-modes depend 
strongly upon p. Noting that x cosp is a measure of the hydrostatic pressure (which 
stabilizes the H- and S-modes) and Xsin /3 is a measure of the inertia of the basic flow 
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FIGURE 15. The variation of x, with M for two values of /3, Pr = 7 ,  Ri = 10, Ro = 5 x 
-, transverse waves ; ---, longitudinal rolls ; u, unstable region. 

(which is essential for the H-mode), this dependence is clear. Figure 15 shows the 
variation of xc with M for two values of p. For fixed x, increasing p reduces the effects 
of the restoring force due to the hydrostatic pressure and increases the effects of the 
inertia of the basic flow, thus destabilizing the flow with respect to  the H- and S- 
modes. Since Bo 4 1, the variation ofp does not change the stability boundaries due 
to the P-mode. In  addition, figure 15 suggests that there is a value of /3 beyond which 
longitudinal rolls are not important in determining the stability boundaries. 
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Figure 16 shows the variation of xc with M for two values of Pr. When Bo is 
sufficiently small, k, = 0 for the H- and S-modes. The effects of convection are absent 
there, so the corresponding xc is independent of Pr. However, the manifestation of 
the P-mode, for which the effects of convection are important, depends strongly upon 
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Pr.  As figure 16 shows, decreasing values of l’r stabilize the P-mode, while the H- and 
S-modes remain unaffected. Therefore, the stable region initially increases as Pr 
decreases. However, as figure 16 suggests, there is a value of Pr below which the 
stability boundaries do not change. 

For the problem considered here, the results of an experiment for a given liquid can 
be Controlled by changing either x (i.e. the flow rate), M (i.e. the temperature 
difference across the film), or p, The variation of xc with ,8 is presented in figure 17. 
When /I = 0, the layer becomes unstable owing to  the S- and P-modes (the latter only 
when MPrlBi > 32.073) for sufficiently small and large values of x, respectively. As 
p increases from zero, a mean flow is generated which can cause instability due to the 
H-mode. Increasing values of p denote higher effects of the inertia of the basic flow 
and lowcr effects of the hydrostatic pressure. Therefore, the value of xc corresponding 
to the H-mode decreases as p increases. However, the value ofxc associated with the 
S-mode increases with increasing p. This is because the hydrostatic pressure 
decreases and in addition the effects of main shear in reinforcing the S-mode increase. 
If Bo + 1, the P-mode is unaffected by the change of p so that the associated xc 
remains constant. The result is that with increasing /I, the range of values of x for 
which the flow is stable decreases. 

4. Conclusions 
The occurrence of thermocapillary and surface wave instabilities in a film flow has 

been examined. There exist three different mechanisms by which energy is transferred 
to the disturbance. For two of these mechanisms the deformation of the free surface 
is essential. Surface deformation modifics the basic temperature there (thus allowing 
the development of thcrmocapillary forces) and a t  the same time produces a non-zero 
shear strc:ss due to the basic flow (thus generating an opposing disturbance shear 
stress). The resulting two modes of instability occur either when the film is thin and 
the liquid is relatively viscous or when the film is thick and the liquid is less viscous, 
respectively. While the thermocapillary modes gives no preferred direction, the 
hydrodynamic mode extracts the maximum amount of energy when the disturbance 
consists of transverse waves. Since the two modes reinforce each other, the 
disturbance for both types of instability takes the form of such waves. Both the 
hydrostatic pressure and the surface tension stabilize the two modes. Since the latter 
force is effective at  relatively short-wavelength disturbances, the instability due to 
both modes takes the form of long waves. 

The third mechanism is also associated with the thermocapillary forces a t  the free 
surface. I n  this case, the development of these forces is a result of the interaction of 
the basic temperature gradient with the perturbation velocity. Since, the effects of 
convection are important, instability occurs a t  short wavelengths. At large and very 
short wavelengths the heat loss through the surface and the dissipation in the film, 
respectively, prevail so that the flow is more stable. For this mode, the basic flow 
stabilizes the disturbances whose wavenumber vectors have a component in the 
streamwise direction, so that the disturbance assumes the form of longitudinal rolls. 
This type of instability exists only when condition (2) is satisfied and occurs a t  
sufficiently thick layers and large temperature gradients. 

Depending on which of these three mechanisms is the dominant one, the instability 
will first assume the form of either transverse waves or longitudinal rolls. When 
condition (2) is not satisfied, the instability will always take the form of transverse 
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waves. In that case and for realistic values of Bo, the critical conditions are 
determined by (20). Similar results arise when condition (2) is satisfied but xp > xH. 
That happens when Pr and Bi are sufficiently small or when p is sufficiently large. In 
the case where the flow is unstable with respect to  both transverse waves and 
longitudinal rolls, the disturbance will presumably assume the latter form, which 
exhibits the largest growth rate. 
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